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1. Introductory

For a random sample of n observations ... x„ drawn from any
statistical population having standard deviation a, an unbiased estimate
of the variance is obtained by dividing sum of squares, of the
n deviations from the sample mean x by \ji — 1) instead of by n.
Denoting this estimate by S"^, we have

S^=S{,x,-xyi{n-\). ' (1)
« = 1

It can easily be shown (_see e.g., Kendall, 1945) that the population
variance is equal to half the mean square of all possible variate
differences. This property holds good for the sample variance S'̂ as
well, because of the identity

ni:{xi—xy = S E {Xi —XjY (2)
i=i <=i i> i

whence

s\=i i; 1)} (3)
Similarly, the covariance of a bivariate sample (.^i, ji).

can be written

E {X- x) {yi- y)j{n - V) = S U (x^- x^) y^)/{n (n - 1)} (4)
i=l «=1 J> i

The correlation coefficient for x and is

Since any identity that holds good for variance will give a
corresponding identity for the covariance we shall in the rest of the
paper discuss only identities for variahce to save space.

Cochran (1946) recently made use of form (3) for the variance
to studt the relative accuracy of systematic and random sampling in
field experimental work.

Part of a thesis approved for the Ph.D. degree of Loiidon University.
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. The identity (2) is a special case of a more general identity

^(Pi) ^ {Pi {Xi- xY] = ^ S pip^ (Xi- x^y, (6)
<=1 j=l i=l i > i

n

where p^ is any real number subject to the condition that Z {p^ Q-,
1

ainax=Z{p^•x^)|S{p^).
11-

There are two applications of (6) which are of some interest.
Firstly, if we have a grouped frequency distribution with/; observations

in the zth class interval centred at and if N = E {f^) the unbiased
1

estimate of the variance of this distribution obtained by using the
degrees of freedom, {N — 1) can be written

(')

whereas the second moment will be

^2 = ^ ^ fifi (Xi- x,y (8)
It is interesting to compare (7) and (8) with the two fonnulffi for

Gini's mean difference given by Kendall (1945). Adapting his summa
tion limits to .fit in with ours, we have either

NiN- 1)£ I I
or

A1= ^2 ^ fifl I I (10)

Kendall calls (9) the mean difference ' without repetition ' and (10) the
mean difference ' with repetition '.

The point that is usually put forward in favour of Gini's mean
difference is that it is independent of the centre of location, being
dependent only on the spread of the variate values among themselves.
It is now clear that this property is shared by the second moment and
variance' of the sample.

Another application of (6) arises in the analysis of variance for
k samples discussed elsewhere by the author (1943). If ;c,., is the
/th observation in the zth sample {i = . .k \ 1=1,.. .«j), 3c, mean

k

of the rth sample, x the general mean and N = S n^, the variance

' between samples 'is ^ -

V,=Sn,{x,-xmk-l) (11)
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and variance ' within samples ' is

= l S (X,, - xdV(N - k). (12)
i=l 1=1 - '

It is assumed that the k samples come from normal populations having
same unknown standard deviation a.

To test the hypothesis that the rth and yth population means are
the same, we use a i-test

=('. - JjyV. (i +i;) • . (")"
with (N — k) degrees of freedom.

Using (6) it can be shown that the variance ratio used to test
whether all the k samples come from the same normal population
(that is, whether the sample means significantly differ among them
selves), is a weighted average of the values. Thus

si 2; +",•) Us' / ^ ^ (14)
t= l i.>i I <=1 j>i

I do not know whether any special significance can be attached
to (14). My own object in proving it in the 1943 paper was this.
Iyer (1937) took the unweighted average of the /y '̂s and finding
it different from the variance ratio felt that the former would be
the proper criterion for discriminating between the sample means.^ By
proving the property (14) it was possible to show that no such test
as proposed by Iyer was necessary.

A two-dimensional extension of the identity (2) was given by
Husain (1943). Let the n observations be arranged in a two-way table
having p rows and q columns, so that n = pq. Let x^j be the observa-
,tion in the rth row and jth column. Let J(., x.j be the mean of x
in the rth row, jth column respectively and X.. the general mean.
The following identity can be proved

<Z

pq 2 2 (Xff Xf. X.J X.,) ^
t=i j=i

^ S 2 2 i: (X,,. X,;,, - X,,, - x,,jr (15)
1=1 j'>j

Each term on the right-hand side of (15) is the square of a
diagonal difference and there are '̂Cg-'Cg such terms. The variance
due to interaction between rows and columns is therefore one-fourth
the mean square of all diagonal differences. Theestimate of interaction
variance obtained by using the right-hand side of (15) is very much
similar to the form in which, " Student" . (1923) first derived the
' error ' variance for chess-board trials.

I
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Similar identities can be derived for higher order interactions,
but they become very complex. The purpose of this paper is to
show that the identities (2) and (15) are only special cases of two
general classes of identities associated with the universe of sample
permutations. The general identity to which (2) belongs can be applied
to a problem of Pitman (1937).

2. Identities Associated with the Universe of Sample

Permutations

For convenience, we shall assume that x^,
in ascending order of magnitude. Let l^, ... I,
satisfying the conditions

I, +...+ /„.= 0 •-

h' + ...+X' = ]

k <•••< /„
If we write the cross-products of / and x "in the,form of the

square given in Fig. 1 and pick up n cells, one from each row and

. . .x„ used in (2) are
be any real numbers

1

l\Xn
'

1

(16)

Fig. 1

each column and add up the Ix products for these cells, we get a linear
function with n terms

n

= S (/,. Xj) (i and / take each of the values 1, .. .n once
i, i = 1 • • •

and once only) (17)
which we shall call a general linear contrast of . . .x„ for the given
1, ... The word ' contrast' is used because can be expressed

as a linear function of differences x, in virtue of the fact that

i(/,) = o.
1

The total number of contrasts of the type (17) is n\. They form
a population which may be called a universe of sample permutations
for linear contrasts of Xj, .. .x„ associated with a given It
can easily be shown that the largest contrast in this universe is
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S Since the /'s of (16) can be chosen in an infinite number of
1

ways, there is an infinite number of universes each consisting of n\
contrasts. When some of the /'s are' equal, the total number of
distinct values for will be only a fraction of «!, say (/r!)/m as each
distinct repeats m times! The value of rn can be calculated from
the usual rules of permutation. At any rate, the moments of the universe
of contrasts will be independent of m, and we may proceed to calculate
the first two moments, assuming that there are n\ values of u^.

It is easily seen that

5(««) = 0 (18)
fc=l ' . .

S yu,-') = {n- 1)! i (/,^) S (x,^)+ 4(n- 2)1 S Z (1,1,) S E (x.x,)
Jt=l 11 i=l j > i - i=l y > •

«!

1)-:
fr<?m which it follows that,

Ml' («.) = 0 _ (20)

(w,) = i (X, - x)V(« - 1) = • (21)'
1

That/x/ will be zero could easily have been anticipated. But the second
moment of the universe of ii^ becoming independent of /j,... /„ and equal
to the variance of the sample x^, .. .x„ was not such an obvious result.

We shall consider two- special universes with different sets of values
for /i, .../„,

(i) Let

(19)

- 1)/ _ - 7 - _ 1 . / = /(JLz (22)

Since (n —1) of the /'s are equal, the number of distinct members
n\

in the universe is
(«- 1)!

or n. They are

1
Mi = Vn in - 1)

1

(« —1) x„— x„._i... Xi —\J (^B
- (n - 1) ... -u„= \/n (n — 1)

(n-1)
(^„-i- x)

w„ =
1

V« (« -1)
- ^,.-1 ...+(«- 1)
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Substituting in (21), we get the second moment or the mean
square of Wi, ...

= (24)
k=l

which-we obviously know to be true from the values of u^,
given in (23).

What (24) points out is thac instead of saying that an unbiased
estimate of variance is obtained by dividing the sum of squares of
n deviations x^— x by {n — 1), we could say that it is the mean square

of the ncontrasts i\J~
n ^ .

The largest linear contrast (/jX;) in this universe of n is
1

(ii) As another example, we shall derive (2) and (3) as a special
case of (21).

Let

4 = .. . = 0, I = (25)

Since {n — 2) of the /'s are equal, the number of distinct linear
It 'contrasts in the universe is —2) ! ~

the type ^j)- Using (21), we get

li =t= ;•)
Since — x^- and x,- —x^ have the same square, (25) may be

re-written •

which is same as the result (3) proved directly from the identity (2).
" ' 1 .

The largest contrast 2 (li x^) in this universe is (x„— Xj) or
1 V ^

(range).

Coming now to the .generalisation of the identity (15) for inter
action variance, we shall assume a set of pq quantities satisfying
the conditions

i (/,„) = i (u = 0 •• "I
. . (28)

^ iku') = 1
h= i h-i , J
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The values and Xij can be written side by side in the form
of two p X q tables as shown in Fig. 2.

1 • • • k • • Q Meaii

1 lid 0

.

Hnh hk hii • 0

P h-i hk ha 0

Mean 0 0 0 0

1 • • ;• • • 1 Mean

1 ^11 ^18 Xt.

.

/ JTil 'ii XiQ Xi-

•

p ^P1 Xpj XpQ Xp.

M ean a-.i X.j X. .

Fig. 2

If we superimpose the x-table on the /-table, multiply the I and
X of each cell and add up the products for all the pq cells we get
a general Hnear contrast 27 (/jfcXy) which is a function only of diagonal
differences of the type (x^j + x '̂̂ ' — —Xi^.) and hence may be called
the general ' interaction contrastBy interchanging the rows among
themselves and the columns among themselves of either the x-table
or the /-table, we will get p] qI different composite squares giving us
a universe of pi ql interaction contrasts. If some of the rows or
columns are identical among themselves the number of distinct
composite squares will be less than pi ql. This will not, however,
affect the moments of the universe of contrasts and hence for calcu
lating them we stiall assume there are pi ql distinct contrasts. It can
be shown that the first moment vanishes and that the second moment
or the mean square of the pi ql interaction contrasts of the type
U /ifc Xii is equal to the interaction variance

h

1

As an example, let us consider the following table of values for

There is a common factor 1^ —0 (g —0 /'g go
V pq

for convenience it has been written outside the table.

(29)
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1
1

{?-!)

• . 1 .

.(?-!) .

.1 1 1

[

!]X-
1

•

. 1 1 1

(p-1)
•

• (p-l)(g-l)

» •hn

Since {p —1) of the rows and {q —1) of the columns of the above
table are identical, the total number of interaction contrasts is pq.
Taking the first of them; got by superimposing the A:-table of Fig. 2
on this /-table, we get

_ 1) {q -1) r 1 ^ 1
Mil

pq
^11. —

. ia DA

+

V(

^ y y X

A typical contrast can therefore be written

V{p-i)%-T) (}= I,; ;^)
The usual expression for interaction variance (29) can therefore

be derived as a special case from the general universe of interaction
contrasts.

As another example, let us assume that

'22 = ~ hi — ~ ~

and /,,s, = 0 when h = 3, .. .p and k = 3, .. .q.

The interaction contrasts now take the form

"b = i (Xii + .Xi'/ - X,/ - .X/,.) , , (33)
and their total number is i pq (p — 1) (q — 1). They form

i pq {p~^) (?—1) couplets which have same magnitude but are of oppo
site sign. The total nimiber of distinct is therefore \pq (/>—!) (?—1)
and their mean square - , ~

(30)

(31)

(32)

1

pqij>- 1) \3 - i)«=i <i=i /
i. Z S S (X,, +'x,y - X,,' - x,',y : (34)
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should be equal to the interaction variance (29), thereby leading us
to the identity (15).

3. - Analogy with Pitman's Problem

If (xi, yi).. .{x„, y„) is a sample of paired observations of two
variates x and y which are independently distributed", Pitraan (1937)
devised a test for the significance of the correlation coefficient based
on its distribution in the universe of sample permutations generated
by pairing each x with every y in turn once. For this universe of
«! values of r, he found that, whatever be the values of x and y

E (/•) = 0; £ (z-^) = IjCn - 1) . (35)

and that under certain conditions depending on x and y

A'proof that E {r^) = \j{n — \) follows from (19) by substituting

/, = . The conditions and are not

necessary for this proof.

4. Upper Limit of the Largest Contrast

The conditions and x, were imposed only for the
reason that the largest of the n\ contrasts could then convenienily be:

written ^ (/^ xj." From the analogy with Pitman's problem we find
1

that for given 1 and x, the upper limit of the largest contrast is less
than S •v/(« —T), becoming equal to S's/in—l) only when there
is perfect correlation between 7 and x, or when l^ is proportional to
Xi ~ X, that is _

. • . (37)/ _ ^

The largest contrast in that case reduces simply to

i (,Xi - xy
Sihxd =

^hx,-xy
= s - 1) -(38)

These results are of sorne use when /j, . ../„ are given and the
sample variance S"" is fixed, but not the individual observations

. Xi, ...x„. Thus, if /'s have the values given in (22), the largest'

contrast is of (23) or ^ the extreme deviate (x„-- x).
The problem is to find the upper limit of the extreme deviate when the
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sample variance 5"^ is fixed. The upper limit is obviously (n —1) Sj-y/n,
and we can also obtain the additional information that this happens
when Xi, .. .x„ in the particular sample which provides this upper limit
satisfies the equations

Xi— X __ X2— X _ _ x„_
-I - -I - ••• (n-l)'

that is, when x^ .. . = x„_^.

Pearson and Chandrasekar (1936) made use of this property of the
extreme deviate while examining a test criterion for the rejection of
outlying observations. Tang (1938) applied it to problems in'analysis
of variance of designed experiments.

If /'s have the value given in (25), the largest contrast becomes

(range). The upper limit of the range in samples of n with a fixed

S is therefore •\/2 (n —1)IS which it attains when x^, .. .x„ satisfy
the conditions

(^2 •^) — ••• —^ (-^n- 1 -^) ® ^
In Other words the range reaches its upper limit y'Krt — 1).S when
the intermediate observations Xj, •••x„_-^ are all concentrated at the
mid-point i (xi+ x„) of the range.

Lastly, let us take

'.-7^,0--"-^) (^1)
n • • .

The largest contrast 2 (/^ xj becomes proportional to Gini's mean
1

difference g for ungrouped data, viz..

g = ^ I! 'S \ Xf — X.
n(n - l)i=x , >4

4

The upper limit of g in samples of n with a fixed S is therefore
^ jg reached when Xj— x is proportional

to /• — r or when the x's are at equal intervals. It is interesting to
note that, iff general, g is proportional f the linear regression of the
magnitude of x on the rank of x.
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